opencv学习01_图像处理基础_二值图像1.二值图像
上述图像比较简单,图像内只有黑色和白色两种不同的颜色,因此只使用一个比特位(0 图像的二值化是最简单的图像处理技术,它一般都跟具体算法联系在一起,很多算法的输入需要是二值数据。比如你把图像文字转换为PDF文字,PDF上只能是黑白两种颜色。比如你给二维码解码,你需要知道哪块黑哪块白。 去掉图像两个字,二值化在视觉里面应用场景多一些。比如早期的人脸检测很多手势识别的方法,第一步要找到皮肤块,所以需要把图像分为皮肤区域和非皮肤区域,这也算是一种二值化,但通常在方法上用的可能不是基于直方图的了(可能是ID3, 随机森林,SVM,甚至神经网络)。比如Haar特征,以及后来的BRIEF和FAST等,还有LBP实际上都是用到二值的思想。 图像二值化可以看作是聚类,可以看作是分类……这些其实不重要,重要的是它快。它最明显的意义就是简化后期的处理,提高处理的速度。 |
原文地址:https://blog.csdn.net/hai411741962/article/details/131686471
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:https://www.msipo.com/article-331.html 如若内容造成侵权/违法违规/事实不符,请联系MSIPO邮箱:3448751423@qq.com进行投诉反馈,一经查实,立即删除!
Copyright © 2023, msipo.com