pytorch 神经网络训练demo
数据集:MNIST
该数据集的内容是手写数字识别,其分为两部分,分别含有60000张训练图片和10000张测试图片
神经网络:全连接网络
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torchvision.datasets as datasets
import torchvision.transforms as transforms
class NN(nn.Module):
def __init__(self, input_size, num_classes):
super(NN, self).__init__()
self.fc1 = nn.Linear(input_size, 50)
self.fc2 = nn.Linear(50, num_classes)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
model = NN(784, 10)
x = torch.randn(64, 784)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
input_size = 784
num_classes = 10
learning_rate = 0.001
batch_size = 64
num_epochs = 1
train_dataset = datasets.MNIST(root='dataset/',
train=True,
transform=transforms.ToTensor(),
download=True)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = datasets.MNIST(root='dataset/',
train=False,
transform=transforms.ToTensor(),
download=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
model = NN(input_size=input_size, num_classes=num_classes).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
for batch_idx, (data, targets) in enumerate(train_loader):
data = data.to(device)
targets = targets.to(device)
data = data.reshape(data.shape[0], -1)
scores = model(data)
loss = criterion(scores, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
def check_accuracy(loader, model):
if loader.dataset.train:
print("Checking accuracy on training data")
else:
print("Checking accuracy on test data")
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device)
y = y.to(device)
x = x.reshape(x.shape[0], -1)
scores = model(x)
_, predictions = scores.max(dim=1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}%')
model.train()
check_accuracy(train_loader, model)
check_accuracy(test_loader, model)
输出结果
Checking accuracy on training data
Got 55770 / 60000 with accuracy 92.95%
Checking accuracy on test data
Got 9316 / 10000 with accuracy 93.16%
来源
【1】https://www.youtube.com/watch?v=Jy4wM2X21u0&list=PLhhyoLH6IjfxeoooqP9rhU3HJIAVAJ3Vz&index=3