在学习编程时,算法是一道硬菜,而dp作为算法的一份子,它的地位在编程界举足轻重。 本文是Java代码哦~ 一、题目详情恶魔们抓住了公主并将她关在了地下城 dungeon 的 右下角 。地下城是由 m x n 个房间组成的二维网格。我们英勇的骑士最初被安置在 左上角 的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。 骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0 或以下,他会立即死亡。 有些房间由恶魔守卫,因此骑士在进入这些房间时会失去健康点数(若房间里的值为负整数,则表示骑士将损失健康点数);其他房间要么是空的(房间里的值为 0),要么包含增加骑士健康点数的魔法球(若房间里的值为正整数,则表示骑士将增加健康点数)。 为了尽快解救公主,骑士决定每次只 向右 或 向下 移动一步。 返回确保骑士能够拯救到公主所需的最低初始健康点数。 注意:任何房间都可能对骑士的健康点数造成威胁,也可能增加骑士的健康点数,包括骑士进入的左上角房间以及公主被监禁的右下角房间。 示例 1:
示例 2: 输入:dungeon = [[0]] 提示: m == dungeon.length 二、题目解析对于dp算法题,一般有两种解题思路: 1、dp[i][j]表示,从[i][j]位置开始,到终点所需最低初始健康点数; 2、dp[i][j]表示,从[0][0]位置开始,到[i][j]所需最低初始健康点数. 由题意可知,第二种解题思路不适合该题目。 在不考虑越界问题情况下,
当dungeon[i][j]足够大时,即使 dp[i][j]+dungeon[i][j] 满足血量要求,我们也需要考虑骑士到达[i][j]位置前,血量足够存活,故需要将 dp[i][j] 与 1 取一个最大值:dp[i][j] = ,Math.max(1, dp[i][j]); 考虑越界问题时,可以增加虚拟结点帮助解题,如: 填表顺序是从下往上,从右往左,故需考虑虚拟节点存储值大小。我们只需要保证终点结点计算时是使用虚拟结点,其他结点不使用虚拟结点,故将虚拟节点中,影响终点的结点置为1,其余结点置为无穷大。 最后返回dp[0][0]即可。 三、代码
提交截图:
结语这篇博客如果对你有帮助,给博主一个免费的点赞以示鼓励,欢迎各位🔎点赞👍评论收藏⭐,谢谢!!! |
原文地址:https://blog.csdn.net/m0_68700019/article/details/131686058
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:https://www.msipo.com/article-948.html 如若内容造成侵权/违法违规/事实不符,请联系MSIPO邮箱:3448751423@qq.com进行投诉反馈,一经查实,立即删除!
Copyright © 2024, msipo.com